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Lecture outline

Vlasov equation for the longitudinal motion, mode coupling

Vlasov equation for the transverse motion

Transverse mode-coupling instability (TMCI)

The Keil-Schnell-Boussard criterion gives only a crude estimate of the
microwave instability threshold. A more rigorous analysis of the stability
problem uses the Vlasov equation and takes into account the finite bunch
length of the beam σz . In this lecture we will illustrate some elements of
this approach. We then formulate the governing equation for the TMCI.
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Vlasov equation for synchrotron oscillations

We start with the Vlasov equation (10.9),

∂f

∂t
− cαη

∂f

∂z
+ K (z , t)

∂f

∂η
= 0 (11.1)

with K given by Eq. (10.4)

K (z , t) =
ω2

s0

αc
z −

e2

γmc

∫∞
z

dz ′n(z ′, t)w`(z
′ − z) (11.2)

Consider first the case of no wake, w` = 0,

∂f

∂t
− cαη

∂f

∂z
+
ω2

s0

αc
z
∂f

∂η
= 0 (11.3)

Introduce cylindrical coordinates (action-angle variables) in the phase
space,

z = r cosφ,
αc

ωs0
η = r sinφ (11.4)
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Limit of zero wake

In the cylindrical coordinates the Vlasov equation becomes31

∂f

∂t
+ωs0

∂f

∂φ
= 0 (11.5)

A general solution to this equation is

f (r , φ, t) = F (r , φ−ωs0t) (11.6)

where F is an arbitrary function periodic in φ with the period 2π. A steady
state solution depends only on r , but if this solution is perturbed, is oscillates
with harmonics of ωs0. Using the periodicity, f can be also written as

f (r , φ, t) =
∞∑

`=−∞F`(r)e
i`φ−i`ωs0t (11.7)

with F−` = F ∗` . An observer will see harmonics of the synchrotron frequency
`ωs0.

31
Use ∂

∂φ
= ∂
∂z
∂z
∂φ

+ ∂
∂η

∂η
∂φ

= −r sin(φ) ∂
∂z

+
ωs0
αc

r cos(φ) ∂
∂η

= − αc
ωs0

η ∂
∂z

+
ωs0
αc

z ∂
∂η
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Animation of the phase space

See animation phase_space_parabolic_potential.gif of the phase
space (we already saw this example in L9).
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Effect of the frequency spread in the beam

The first effect of the longitudinal wake is that the synchrotron
oscillation frequency is not constant any more, see (10.25). This
introduces “mixing” of the phases. See animation
phase_space_nonlinear_potential.gif.

This is the model where
ωs0 → ωs0 + r∆ωs in
Eq. (11.6).
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Linearization and solutions of the Vlasov equation

To solve the Vlasov equation we first assume that f (r , φ, t) = f0(r) + f1(r , φ, t)
with |f1|� f0. Here f0 is the solution of the Häıssinski equation. We linearize
the equation neglecting the terms of the second and higher orders in f1. We
then assume f1(r , φ, t) ∝ e−iΩt and expand f1 in a complete set of orthonormal
functions uk(r), k = 0, 1, 2, . . .,

f1(r , φ, t) =
∑
k,`

ak,`uk(r)e
−iΩt+i`φ (11.8)

The Vlasov equation then reduces to an infinite linear system of equations for
the unknowns ak,` with the matrix that involves integrals of the wake function
(or the impedance). The matrix is truncated and solved for the eigenvalues —
the frequency Ω is an eigenvalue of this matrix. A set of the eigenfrequencies is
found as a function of the bunch charge. Typically, the system is stable if
Q < Qthresh and unstable above the threshold.

In general, an eigenmode with an eigenfrequency Ω is a combination of all `
values32 — the mode coupling.

32
In old papers sometimes a simpler approximation was used in which it was assumed that each mode has its own ` and

different values of ` do not couple. This leads to the so called Sacherer equation.
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Mode coupling and the stability threshold

An example from A. Chao’s book.

This example is for a diffraction model
broad-band impedance (ω0 = 2π/T0

with T0 the revolution period):

Z`(ω) = R
(ω0

ω

)1/2

[1 + isgn(ω)]

and a model water-bag model of the
beam distribution,

f0(r) = const, for r < ẑ

and f0 = 0 otherwise. The parameter Υ
is

Υ =
Ne2αR

γmω2
s0

(
c

T0ẑ

)3/2

Problem: use ωs0 = ασηc/σz and compare this criterion with the Keil-Schnell
Eq. (10.18).
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TMCI

We will now take a look at the formalism of the TMCI. In this instability
it is important to take into account both the longitudinal and transverse
dynamics of the bunch. In the longitudinal part, the effects of the
longitudinal wake is neglected, but the short-range transverse wake is
taken into account.

The synchrotron motion changes relative position of the particles in the
bunch on the time scale of ∼ 1/ωs . This is what makes this instability
different from the BBU instability in L7.
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Vlasov equation for transverse oscillations

As we know, the equations for betatron oscillations are (see Eq. (7.2))

ÿ +ω2
βy =

e2

γm
Wt (11.9)

where Wt is the transverse wake per unit length generated by the whole
beam at the location of the particle. We introduce p = ẏ and write it as
two first order equations

ẏ = p, ṗ = −ω2
βy +

e2

γm
Wt (11.10)

If we want to describe the transverse degree of freedom only, then the
distribution function is f (y , p, t). The Vlasov equation is written
analogous to (10.8). We first write it for the case when there is no wake,

∂f

∂t
+ ẏ

∂f

∂y
+ ṗ

∂f

∂p
=
∂f

∂t
+ p

∂f

∂y
−ω2

βy
∂f

∂p
= 0 (11.11)
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Vlasov equation for transverse oscillations

Introduce the amplitude and the phase in the betatron phase space

ρ =
√
y2 + p2/ω2

β (11.12)

and the phase variable ζ in the transverse space

y = ρ cos ζ,
p

ωβ
= ρ sin ζ (11.13)

Considering f as a function of these variables, f (ρ, ζ, t), we find that the
Vlasov equation becomes:

∂f

∂t
−ωβ

∂f

∂ζ
= 0 (11.14)

(cf. Eq (11.5))
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Solving Vlasov equation without wakes

This equation can be easily solved,

f (ρ, ζ, t) = F (ρ, ζ+ωβt) (11.15)

where F is an arbitrary function periodic in ζ with the period 2π. Using the
periodicity, this can be also written as

f (ρ, ζ, t) =
∞∑

n=−∞Fn(ρ)e
inζ+inωβt (11.16)

with F−n = F ∗n . For the average offset of the beam we have

〈y〉 =
∫
dpdy yf (y , p, t) =

∫
ρ dρdζ ρ cos(ζ)f (ρ, ζ, t) (11.17)

Note that if we compute 〈y〉 using (11.16), only terms with n = ±1 are
involved, which means that 〈y〉 oscillates with the frequency ωβ.
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Vlasov equation for transverse oscillations

We now take into account both the transverse and longitudinal motion.
We need to consider the distribution function

f (y , p, z , η, t) (11.18)

where again p = ẏ . It satisfies the Vlasov equation

∂f

∂t
+ ż

∂f

∂z
+ η̇

∂f

∂η
+ ẏ

∂f

∂y
+ ṗ

∂f

∂p
= (11.19)

∂f

∂t
− cαη

∂f

∂z
+
ω2

s0

αc
z
∂f

∂η
+ p

∂f

∂y
+

(
e2

γm
Wt(z , t) − yω2

β

)
∂f

∂p
= 0

In this equation we included the transverse wake, but neglected the
longitudinal one. Note the arguments of Wt — here we implicitly assume
an axisymmetric wake.

This is a typical starting point for analysis of transverse bunch
instabilities.
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Vlasov equation for the TMCI

We now change the variables from y , p, z , η to ρ, ζ, r , φ. The distribution
function is considered as a function of these variables,

f (r , φ, ρ, ζ, t)

Then the Vlasov equation takes a simpler form

∂f

∂t
+ωs0

∂f

∂φ
−ωβ

∂f

∂ζ
+

e2

γm
Wt
∂f

∂p
= 0 (11.20)

Here in the last term Wt(z , t)→Wt(r cosφ, t), and the derivative ∂/∂p
should be expressed in terms of the derivatives ∂/∂ρ and ∂/∂ζ.
If we can neglect the wake, then

∂f

∂t
+ωs0

∂f

∂φ
−ωβ

∂f

∂ζ
= 0 (11.21)

The general solution of this equation can be easily found

f (r , φ, ρ, ζ) = F (r , ρ, φ−ωs0t, ζ+ωβt) (11.22)

where F is an arbitrary function of four variables periodic in φ and ζ
with the period of 2π.
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Vlasov equation for the TMCI

It can also be written as

f (r , φ, ρ, ζ, t) =
∞∑

n,`=−∞Fn,`(r , ρ)e
i`φ+inζ−it(`ωs0−nωβ) (11.23)

Similar to what we have discussed before, the average offset (at each slice z) is
caused by n = ±1, so the slice centroids oscillation with the frequency
ωβ ± `ωs0. With account of the impedance these oscillations start to couple
until two of them merge resulting in an instability — the transverse mode
coupling instability.
We now follow the derivation of M. Blaskiewicz 33. Introduce

g0(z , η, t) =

∫
dy dp f (y , p, z , η, t) (11.24)

and integrate the Vlasov equation (11.19) over y and p. We obtain

∂g0

∂t
− cαη

∂g0

∂z
+
ω2

s0

αc
z
∂g0

∂η
=
∂g0

∂t
+ωs0

∂g0

∂φ
= 0 (11.25)

33
M. Blaskiewicz. Fast head-tail instability with space charge. Phys. Rev. ST Accel. Beams, 1:044201, Aug 1998.
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Vlasov equation for the TMCI

g0 describes the longitudinal motion only. This equation is satisfied if we
assume that g0 does not depend on t and only depends on r , g0 = g0(r). This
means that we assume that longitudinally the beam remains in equilibrium. g0 is
an equilibrium longitudinal distribution in the beam (say, a Gaussian).

We then introduce two more functions

y0(z , η, t) =

∫
dy dp y f p0(z , η, t) =

∫
dy dp p f . (11.26)

Integrating Eq. (11.19) with the weights y and p we obtain

∂y0

∂t
+ωs0

∂y0

∂φ
− p0 = 0 ,

∂p0

∂t
+ωs0

∂p0

∂φ
+ω2

βy0 −
e2

γm
Wt(z , t)g0 = 0 . (11.27)

(sometimes one replaces ω2
β → ω2

β(1 + ξη)2, where ξ is the chromaticity) if
the lattice chromaticity is taken into account).
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Vlasov equation for the TMCI

We now introduce a complex variable

Y = y0 + ip0
1

ωβ
(11.28)

If we ignore the wake and take the solution (11.22) we find that
Y ∝ e−i(ωβ+`ωs0)t .
The two equations (11.27) can now be combined into one equation for Y

∂Y

∂t
+ωs0

∂Y

∂φ
+ iωβY −

ie2

γmωβ
Wt(z , t)g0 = 0 (11.29)

The transverse wake is proportional to the averaged over the distribution
function dipole momentum of the beam and convoluted with the transverse
wake wt

Wt(z , t) =

∫
dp dy dη dz ′ yw̄t(z

′ − z)f (y , p, z , η, t)

=

∫
dη dz ′ y0(z

′, η, t)w̄t(z
′ − z) . (11.30)

The offset y0 in this equation can be expressed as y0 = (Y + Y ∗)/2. We will
neglect the complex conjugate term, because it is not resonant, and will use
y0 → Y /2. After that Eq. (11.29) takes the form
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Vlasov equation for the TMCI

Now assume Y = Y0(z , η) exp(−iΩt). We have

i(ωβ −Ω)Y +ωs0
∂Y

∂φ

−
ie2N

2γmωβ
g0

∫
dη dz ′ Y (z ′, η, t)w̄t(z

′ − z) = 0 (11.31)

Remember that in the last term we need to substitute z → r cosφ.

We greatly simplified our original Vlasov equation because Y0 depends
only on z and η.

There is a mode coupling effect here as well.
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Sato-Chin analysis

K. Satoh and Y. Chin34 developed an effective computational method for
TMCI analysis assuming a Gaussian distribution of the beam.
Here is an example of stability analysis of TMCI from their paper. The
resonant impedance is assumed with the resonant frequency of 1.3 GHz,
Q = 1 and R = 0.68 MΩ/m.
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34
K. Satoh and Y. Chin, NIMA 207, 207 (1983).

19



How to quickly estimate the threshold for TMCI?

We see that TMCI threshold corresponds to the betatron frequency shift
of order of ωs0. We can estimate when this happens using Eq. (11.9),

y∆ωβ ∼
e2

2γmωβ
W̄t

For crude estimate we replace the wake by the kick factor (4.4)

W̄t ∼ Nyκkick (11.32)

which gives the following estimate for the instability threshold

ωs0 ∼
Nthe

2

2γmωβ
κkick (11.33)

Here κkick is the kick factor per unit length.
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How to quickly estimate the threshold for TMCI?

S. Krinsky35 did extensive simulations for several types of impedances: a
broad-band resonator, a resistive wall with normal surface impedance,
and a chamber wall with extreme anomalous skin effect. He has
considered: (1) the ring with a single-frequency RF system for which the
equilibrium longitudinal bunch distribution is Gaussian; and (2) the ring
with a third harmonic (Landau) cavity included to lengthen the bunch.
His result for the threshold:

Ne2βy

4πγmc2νs
κ◦kick ≈ 0.7 (11.34)

Here κ◦kick is the kick factor for the whole ring.

35
S. Krinsky, “Simulation of Transverse Instabilities in the NSLS II Storage Ring”, BNL - 75019-2005-IR (2005).
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